Conversion of Substrate Analogs Suggests a Michael Cyclization in Iridoid Biosynthesis
نویسندگان
چکیده
The core structure of the iridoid monoterpenes is formed by a unique cyclization reaction. The enzyme that catalyzes this reaction, iridoid synthase, is mechanistically distinct from other terpene cyclases. Here we describe the synthesis of two substrate analogs to probe the mechanism of iridoid synthase. Enzymatic assay of these substrate analogs along with clues from the product profile of the native substrate strongly suggest that iridoid synthase utilizes a Michael reaction to achieve cyclization. This improved mechanistic understanding will facilitate the exploitation of the potential of iridoid synthase to synthesize new cyclic compounds from nonnatural substrates.
منابع مشابه
Identification of iridoid synthases from Nepeta species: Iridoid cyclization does not determine nepetalactone stereochemistry
Nepetalactones are iridoid monoterpenes with a broad range of biological activities produced by plants in the Nepeta genus. However, none of the genes for nepetalactone biosynthesis have been discovered. Here we report the transcriptomes of two Nepeta species, each with distinctive profiles of nepetalactone stereoisomers. As a starting point for investigation of nepetalactone biosynthesis in Ne...
متن کاملIridoid biosynthesis in staphylinid rove beetles (Coleoptera: Staphylinidae, Philonthinae).
The biosynthesis of chrysomelidial and plagiodial was studied in the rove beetle subtribe Philonthina (Staphylinidae). Glandular homogenates were found to convert synthetic (2E,6E)-[trideuteromethyl-5,5-(2)H(5)]octa-2,6-diene-1,8-diol (10) into nor-chrysomelidial (14) and nor-plagiodial (13). The overall transformation requires; i) oxidation of the substrate at C(1) and C(8), ii) cyclization of...
متن کاملInverted stereocontrol of iridoid synthase in snapdragon
The natural product class of iridoids, found in various species of flowering plants, harbors astonishing chemical complexity. The discovery of iridoid biosynthetic genes in the medicinal plant Catharanthus roseus has provided insight into the biosynthetic origins of this class of natural product. However, not all iridoids share the exact five- to six-bicyclic ring scaffold of the Catharanthus i...
متن کاملBiosynthesis of monoterpenes. Enantioselectivity in the enzymatic cyclization of linalyl pyrophosphate to (-)-endo-fenchol.
The conversion of geranyl pyrophosphate to (-)-endo-fenchol is considered to proceed by the initial isomerization of the substrate to (-)-(3R)-linalyl pyrophosphate and the subsequent cyclization of this bound intermediate. To test this stereochemical scheme, phosphatase-free preparations of (-)-endo-fenchol cyclase from fennel (Foeniculum vulgare M.) fruit were repeatedly incubated with a samp...
متن کاملFe(HSO4)3/SiO2: An efficient and heterogeneous catalyst for cyclization of 2- aminochalcones to 2- aryl-2,3- dihydroquinolin- 4(1H)- ones
Silica ferric hydrogensulfate is an efficient heterogeneous catalyst for the cyclization of 2- aminochalcones to the corresponding 2,3-dihydroquinolin- 4(1H)-ones. This intramolecular aza Michael reaction was carried out in high yields using chalcones bearing of electron donating and electron withdrawing groups. The catalyst is reusable without significant decreases in its activity after four t...
متن کامل